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Abstract. The Quantum-dot Cellular Automaton (QCA), a processing platform
based on interacting quantum dots was introduced by C. S. Lent in the mid 1990s.
What followed was an exhilarating period with the development of the line, the
functionally complete set of logic functions, as well as more complex processing
structures, however all in the realm of binary logic. Regardless of these achievements,
it has to be acknowledged that the use of binary logic is in computing systems mainly
the end result of the technological limitations, which the designers had to cope with
in the early days of their design. The first advancement of QCAs to multi-valued
(ternary) processing was performed by Lebar Bajec et al, with the argument that
processing platforms of the future should not disregard the clear advantages of multi
valued logic. Some of the elementary ternary QCAs, necessary for the construction
of more complex processing entities, however, lead to a remarkable increase in size
when compared to their binary counterparts. This somewhat negates the advantages
gained by entering the ternary computing domain. As it turns out even the binary
QCA had its initial hiccups, which have been solved by the introduction of adiabatic
switching and application of adiabatic pipeline approaches. We here present a study
that introduces adiabatic switching into the ternary QCA and employs the adiabatic
pipeline approach to successfully solve the issues of elementary ternary QCAs. What
is more the ternary QCAs here presented are size wise comparable to binary QCAs.
This in our view might serve their faster adoption.
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1. Introduction

The pioneers in computer design were well aware that the world is not purely black

and white. In this view employing binary logic for its representation is not always

the most suitable. Multi-valued logic, a generalization of binary logic, represents an

important alternative. The potential advantages are greater data storage capabilities,

faster arithmetic operations, better support for numerical analysis, non-deterministic

and heuristic procedures, communication protocols and efficient solving of non-binary

problems [1, 2, 3, 4]. Ternary logic is the simplest logic from the set of multi-valued logics

and the ternary number system offers the most efficient way of representing numbers

[5]. Hence ternary logic seems quite a natural choice for multi-valued computer design.

Unfortunately, all attempts of its realization have so far more or less fallen through,

mostly due to inaccessibility of basic building blocks compatible with multi-valued

logic. On the other hand, a bistable switch, above all the CMOS transistor, has made

construction of binary computers possible and simple. The absence of competitive multi-

state building blocks has strengthened the dominance of binary technology, which can

be noticed by observing the development guidelines for future processing platforms.

None the less, we believe, that with nanotechnology, which enables the manipulation

of materials on the level of atoms, time has come to reconsider the possibilities for

the realization and usage of multi-valued logic. The initial work centred around the

QCA platform employed for multi-valued processing, more precisely ternary logic, was

performed by Lebar Bajec et al [6, 7, 8]. The authors have advanced the basic binary

QCA cell (bQCA cell) originally introduced by Lent et al [9] so that it allows the

representation of three logic values and named it simply the ternary QCA cell (tQCA

cell). The authors showed that the straight wire and the core of the inverter retain

their functionality with a simple switch of the basic building block (i.e. the substitution

of bQCA cells for tQCA cells promotes the two QCAs to work in a ternary domain).

This, however, is not true for the corner wire and the fan-out. Besides that, extending

the inverter core with a wire provokes erroneous behaviour. Even more problematic is

the QCA, which implements ternary conjunction and disjunction, namely the majority

voting gate [6, 7, 8, 10]. The authors did solve this issue, but by developing a more

complex and from the size point of view suboptimal structure [7, 8]. Indeed when

compared to the binary counterpart the QCA more than tripled in size. In addition the

new structure, although implementing both ternary conjunction as well as disjunction,

does not allow input flexibility (i.e. using one as the selector of the computed function),

which is one of the more praised about features of the binary majority voting gate.

This induces a concern that the new processing platform, due to the complexity of

the primitives, which serve as building blocks of arithmetic-logic units and memorizing

units, might experience a future similar to its predecessors.

In this article we present solutions that are based on adiabatic pipelining [11], which

is derived from adiabatic switching. The decision for its application originates from the

benefits that were presented by researchers working on binary QCAs. The foremost
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two are increased switching stability of QCAs and simplified design of memorizing

structures. A quantum-mechanic based model with support for adiabatic switching

was thus developed for modelling and simulation of tQCA cell based QCAs. The semi-

classical model employed by Lebar Bajec et al is due to its simplicity easy to implement,

but allows only an overall estimation of the behaviour of tQCA based structures. Indeed

a limited consideration of the quantum-mechanic properties disables the possibility of

the introduction of adiabatic switching [12]. A quantum-mechanic model that is based

on a Hubbard-type Hamiltonian with Coulomb repulsion, on the other hand, takes

into account the full range of quantum-mechanic properties. By employing it we here

present workable structures that implement the ternary corner wire, the ternary fan-

out and the ternary majority voting gate and solve the interconnection problem of the

ternary inverter.

In section 2 we present an overview of the ternary quantum-dot cell, followed by

its quantum-mechanic description. In section 3.1 we describe the adiabatic pipelining

and its influence on the quantum-mechanic model. Section 4 concludes by presenting

tQCA based QCAs that employ adiabatic pipelining to implement the ternary inverter

interconnection, the ternary corner wire, the ternary fan-out, the ternary symmetric

inverter and the ternary majority voting gate.

2. The ternary QCA

A quantum-dot cellular automaton (QCA) is a planar array of quantum-dot cells (also

named QCA cells). Each cell contains a specific number of charges (typically electrons)

and its influence on neighbouring cells is due to Coulomb interaction between its charges

and the charges residing on them. Inside a single cell the charges reside only at

designated locations, the quantum dots. They are able to tunnel between adjacent

quantum dots, but tunnelling outside of a cell is impossible. QCA cells operate at

energy levels where Coulomb interaction prevails over tunnelling. This means that with

specific planar arrays (arrangements) of QCA cells it is possible to mimic the behaviour

of interconnecting wires as well as logic gates and by interconnecting these more complex

devices capable of processing can be constructed.

The basic binary QCA, presented by Lent et al, is constructed from bQCA cells,

which support the representation of binary information, and is capable of binary

processing [9]. Its following advancement, the ternary QCA, presented by Lebar Bajec

et al, employs tQCA cells, which support the representation of ternary information, and

enables ternary processing [6].

2.1. The tQCA cell

The tQCA cell consists of eight circular quantum dots with diameter D = 10 nm. The

quantum dots are arranged in a circular pattern with radius D/sin (π/8), so that the

distance between neighbouring quantum dots equals 2D (see Fig. 1(a) and (b)). The
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Figure 1. The geometry of the ternary quantum-dot cell presented by Lebar Bajec
et al (a). The denotation of the quantum dots and the tunnelling paths in the ternary
quantum-dot cell (b).

tQCA cell contains two electrons, and the same tunnelling properties apply as in the

bQCA cell (i.e. the electrons can tunnel only between adjacent quantum dots and not

outside of the cell). Since correct intercellular interaction is possible only if symmetric

charge neutralization is ensured [13], a fixed positive charge of ρ+ = e0/4, where e0 is

the elementary charge, is assigned to each quantum dot.

In an isolated quantum-dot cell the contained electrons, due to Coulomb repulsion,

strive to localize in quantum dots that ensure their maximal separation. In the tQCA

cell there are four such arrangements (see Fig. 2(a)). According to Lebar Bajec et al the

Figure 2. The four distinct electron arrangements, i.e. the four possible states marked
A, B, C and D of a ternary quantum-dot cell, that correspond to the maximal inter
electron separation (a) and the representation of a ternary quantum-dot cell in neutral
state (b).

arrangement with electrons in quantum dots 2 and 4 is marked as state A, the one with

electrons in quantum dots 1 and 3 as B, 5 and 7 as C and 6 and 8 as D. In the absence

of external electric fields these four arrangements have exactly the same energy and

correspond to the tQCA cell’s ground state. This degeneracy manifests as an equally

probable localization of the electrons in every dot, which is symbolically represented as

in Fig 2(b). It is said that the tQCA cell is in neutral state. The presence of external

influences splits the degeneracy and causes one of the arrangements to become the tQCA

cell’s ground state.

One of the principles that define computing with QCA is ground state computing

[9]. It asserts that from the computing point of view the only acceptable state of a QCA

cell is its ground state. The four possible electron arrangements of a tQCA cell can thus
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be interpreted as logical values. We here employ the balanced ternary logic, so state

A is interpreted as logical value −1, state B as logical value 1 and states C and D as

logical value 0. State D is typically, for reasons that will be explained in the following

chapters, allowed only as an internal (processing) state [6, 7, 8].

Another principle, which defines computing with QCA, is edge driven computation.

It asserts that the input cells, using which data is input into the QCA for processing,

are typically situated at the borders of the structure and their states are fixated using

external electrostatic fields. Similarly it asserts that the output cells, by means of

which the processed data is output from the QCA, are positioned at the borders of the

structure as well. Their states are read and interpreted as logical values, which represent

the output of the logic function implemented by the QCA. The rest of the cells act as

internal cells and are the only cells that perform any data transformation.

2.2. The model

For the tQCA cell we employ a simple model that uses a tight-binding Hubbard-type

Hamiltonian similar to the one used by Lent et al for the bQCA cell. The quantum

dots are represented as sites and the degrees of freedom internal to the quantum dots

are ignored [9]. The corresponding Hamiltonian for the observed cell c is composed of

four terms and can be written as

Ĥc =
∑

i,σ (V0 + V c
i )n̂i,σ

+
∑

i>j,σ ti,j(â
†
i,σâj,σ + â†j,σâi,σ)

+
∑

i EQn̂i,↑n̂i,↓
+

∑
i>j,σ,σ′ VQ

n̂i,σn̂j,σ′
ri,j

.

(1)

The first term of equation (1) deals with on-site energy, the second term accounts

for electron tunnelling between sites, the third term is the on-site charging cost for

localizing two electrons of opposite spin at the same site and the last term corresponds

to the Coulomb interaction between electrons localized at different sites. The number

operator for site i and spin σ is represented by n̂i,σ = â†i,σâi,σ, where â†i,σ is the creation

operator which creates an electron with spin σ at site i.

As we here consider a fixed number of electrons in the cell the overall energy

constant V0 is irrelevant and set to zero. The potential energy of an electron at site

i in the observed cell c due to the existing charges in all other cells of the QCA is

calculated as:

V c
i =

∑

k 6=c,j

VQ

ρk
j − ρ+

rk,c
j,i

, (2)

where ρk
j is the electron density at site j in cell k, ρ+ is the fixed positive charge

used to maintain charge neutralization, rk,c
j,i is the distance between site j in cell k and

site i in cell c, and VQ is the Coulomb coupling strength. The on-site charging cost

EQ = VQ/(D/3) is a physically reasonable approximation for the Coulomb energy of

two electrons separated by one third of the quantum dot’s diameter D. The tunnelling
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energy ti,j is associated with tunnelling between dots i and j; the choice of its value will

be explained in the following chapters.

Although the QCA concept is generic in that there may be different possible

implementations (e.g. metal-island, semiconductor, molecular, magnetic [14, 15]) the

specific values of the physical parameters used here within correspond to a semiconductor

implementation based on a GaAs/AlGaAs material system [16, 17]. The choice has been

made regardless of the known fabrication immaturity, primarily because the platform

is well investigated and the obtained results can be easily compared with their binary

counterparts [18, 19, 20, 21]. To be specific the Coulomb coupling strength VQ was

evaluated for the GaAs/AlGaAs material system assuming a uniform dielectric constant

of 11.9 [12] and its value is 120.9 meV.

To find the stationary states of the observed tQCA cell, we solve the time-

independent Schrödinger equation

Ĥc |Ψn〉 = En |Ψn〉 , (3)

where |Ψn〉 is the nth eigenstate of the Hamiltonian and En is the corresponding

eigenenergy. These eigenstates are found in the subspace of zero total spin projection,

|Ψn〉 =
∑

i,j

ψn
ij â†i,↑â

†
j,↓ |0〉 , (4)

where â†i,↑â
†
j,↓ |0〉 represents spin up and down electron states at sites i and j, respectively,

and summations run over all 8 sites in the cell. The Hamiltonian matrix is diagonalized

numerically using realistic parameters corresponding to GaAs/AlGaAs.

2.3. Mapping tQCA cell states to logical values

In order to provide the means for processing every processing platform must use some

sort of mapping from physical quantities into logical values and vice versa. Classical

CMOS uses voltage levels, the binary QCA, on the other hand, uses polarization [9].

As a convenient single variable measure the polarization enables mapping of a bQCA

cell state into the corresponding logical value and assuming an ideal charge distribution

also vice versa. The polarization presented by Lent et al is, however, not directly

applicable to tQCA cell states, therefore we characterize the logical value of the cell by

the probability that the corresponding logical state S (A, B, C or D) is occupied.

The ground state of the system is, in our case, due to the strong repulsive

interaction, always a spin singlet. The logical states are thus represented by singlet pairs

(dimers) of electrons occupying two diametrical sites, |A〉 = 1√
2
(â†2,↑â

†
4,↓− â†2,↓â

†
4,↑) |0〉 for

S=A, e.g., and correspondingly for other states presented in Fig. 2. An appropriate

quantifying measure, if the system is in a particular state S, is the density-density

correlation function

PS =
∑

σ,σ′
〈Ψ0| n̂i,σn̂j,σ′ |Ψ0〉 , (5)
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where i and j are sites characterizing logical state S. In our case of negligible double

occupancy PS simplifies to the probability that electrons are in quantum state |S〉, i.e.,

PS = |〈S|Ψ0〉|2.
In the case of a static charge distribution or in the limit when electron density

fluctuations are negligible the correlation function decouples, PS = ρiρj, where electron

density ρi is given by

ρi =
∑
σ

〈Ψ0| n̂i,σ |Ψ0〉. (6)

The electron density is in our approach applied also to represent the charge density

in equation (2).

The logical value of the cell can also be characterized by a single parameter L,

which takes values L = ±1 if the cell is in logical states A or B, respectively, and L = 0

if the cell is in logical states C or D. A suitable choice is

L =
PB − PA

Q
, (7)

where Q = PA +PB +PC +PD is the probability, that the ground state of the cell is in

one of the quantum states |S〉. Such a single measure L is reliable under the condition

that Q is sufficiently close to unity – fulfilled in the regime of strong Coulomb repulsion

studied in this paper – and deviations occur only during transitions between the states.

3. The cell to cell interaction

QCA processing is based on cell to cell interaction, where the state of a cell influences the

states of its neighbours and vice versa. The basic interaction shown in Fig. 3 comprises

two tQCA cells, where cell X acts as the input (driver) and cell Y as the observed

output. We choose the cells’ centres to be separated by r = 110 nm, so that the

proportion between the maximal inter dot distance in a cell and the inter cell distance

remain the same as in the case of the bQCA cell.

Figure 3. The tQCA cell to cell interaction; the initial state, where cell X is in state
A and cell Y is neutral (a) and the resulting state where cell Y assumes state A (b).

The model, equation (1), can easily be solved for a single cell. However, to analyse

a QCA composed of a larger number of tQCA cells in the same way would soon reach

the boundaries of feasibility. Indeed, exact diagonalization methods become intractable

as the number of cells and the number of basis states increase rapidly (e.g. a site-ket
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basis for a QCA composed of k tQCA cells requires 64k ket vectors). To overcome this

problem when modelling QCAs composed of bQCA cells Lent et al proposed a method

called Intercellular Hartree Approximation (ICHA) [22]. We here employ the same

technique. The ground state of the entire system (i.e. the QCA) is found by iteratively

solving for the ground state of each cell. A single cell is observed using (3) and the

effects of that cell on the potential energies in all other cells are then updated. The

intercellular interaction is treated self-consistently using the Hartree approximation.

The cell response function is obtained by applying a static charge distribution

(ρD
i ) to cell X and observing the resulting charge distribution in cell Y. As a series of

sequential steps first a transition from one ground state to neutral and then from neutral

state to another ground state is applied to cell X. The static charge distribution for the

transition form neutral state to a ground state is computed as (see Fig. 4)

ρD
i (s) =

√
s(1− ρ+)2 + ρ2

+,

ρD
i′ (s) = min(ρ+, (1− ρD

i (s))/2),

ρD
i′′(s) = 1− ρD

i (s)− 2ρD
i′ (s),

(8)

where s ∈ [0, 1]. With s = 0 the static charge distribution gives a neutral cell, whereas

with s = 1 a cell with electrons occupying two diametrical quantum dots is obtained.

The charge density in quantum dots characterizing the ground state is given by ρD
i (s),

Figure 4. Plot of the static charge distribution (a) applied to cell X for the transition
from neutral state to state A (b).

(i.e. i = 2 and 4 for ground state A, 1 and 3 for ground state B, etc.). The charge

density in the n.n. quantum dots is given by ρD
i′ (i.e. i′ = 5, 6, 7 and 8 for states A and

B, etc.) and the charge density in the n.n.n. quantum dots is given by ρD
i′′ (i.e. i′′ = 1

and 3 for state A, etc.).

Figure 5 presents six state transitions of cell X and the corresponding response

functions for cell Y. Every transition of cell X has been carried out in 2000 steps. The

results were obtained using the ICHA approach for tunnelling energy t = −0.01 meV.

Reverse transitions are not presented as they are symmetrical to those presented. For

each transition there are four graphs depicting the PS for states A, B, C and D. The

lighter curve (blue) is for cell X and the darker curve (orange) is the response of cell
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Figure 5. The cell response functions for six state transitions. The lighter curve
(blue) denotes the state transition of cell X and the darker curve (orange) denotes the
response function of cell Y.

Y. Observing the graphs it can be noticed that cell Y follows the state changes of cell

X. What is more, cell Y saturates very quickly to the corresponding state and the

response function is highly non-linear for the initial and final state and almost flat for

the other two. As in the case of the bQCA cell [23], the abruptness of the response

function depends on the ratio of tunnelling energy to the Coulomb energy for electrons

on neighbouring sites.
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3.1. Adiabatic pipelining

In computer science pipelining is a well known technique, typically used for improving

computing performance [24]. The basic idea is to divide a problem into independent

sub problems, which can be worked on simultaneously, but in sequence. From this

viewpoint the pipelining is similar to an assembly line in a manufacturing plant. New

inputs are accepted at one end, are worked on in a sequence of stages and outputted at

the other end of the assembly line. By laying out the production process on an assembly

line, products at various stages can be worked on concurrently. In computer science, a

pipeline refers to a set of processing elements, namely stages, connected in a series where

the output of one stage provides the input of the next one. Each stage is dedicated to

solving a particular independent sub problem and can be executed in parallel with the

other stages. To overcome synchronization problems the execution of stages is usually

controlled by one or more clock signals. Using pipelining the computing performance is

improved by the increase of the system’s throughput when processing a stream of data.

In QCA the pipeline architecture was introduced by Lent et al [11]. Interestingly

enough, it was not used primarily due to the above described benefits, but to increase

processing reliability of complex QCAs. The latter mainly depends on the reliability of

the switching process, i.e. the transition from a cell’s ground state that represents one

logical value to a ground state that represents another. An uncontrolled execution of

this transition is called abrupt switching, while a controlled execution is achieved by

applying the concept of adiabatic switching [11]. Its implementation in QCAs is based

on a cyclic control signal, denoted as the adiabatic clock, which, by means of an electric

field that acts on the inter-dot barrier heights, controls the probability of tunnelling

of electrons within a QCA cell. The adiabatic clock signal is composed of four phases

Figure 6. The adiabatic clock signal, which controls the cells’ switching process is
composed of four phases, namely: switch (S), hold (H), release (R) and relax (L). In
the graph the barrier height is normalized to the interval [0, 1], where value 0 denotes
lowered barriers (high probability of the electrons tunnelling between adjacent quantum
dots) and value 1 denotes raised barriers (no tunnelling of electrons possible).

(see Fig. 6). The gradual increase of barrier heights is called the switch phase (S) and

serves the affected cells’ gradual update of their states with respect to states of their
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neighbours. The phase with constant and raised barriers is called the hold phase (H)

and is intended for the stabilisation of the cells’ states when they are to be transmitted

to the neighbours that are in the switch phase (i.e. the affected cells act as a fixated

input for all other cells). The gradual decrease of the barrier heights and the constant

and lowered barriers are called release (R) and relax (L) respectively and support the

cells’ gradual preparation for a new switch (i.e. the cells’ states gradually transit to a

neutral state).

In the Hamiltonian presented in equation (1) the inter-dot barrier height is modelled

through parameter t, which is thus directly affected by the adiabatic clock signal. For

the tQCA cells the chosen clock signal is not linear, as it turned out to be too abrupt for

proper localization of the electrons. In fact when raised barriers correspond to 0 meV

and lowered to −2 meV preliminary tests showed that most of the ‘action’ happens

when t ∈ [−0.5, 0] meV [25]. The increased number of quantum dots with respect to the

bQCA cell leads to more possible locations for the electrons to tunnel to, hence their

localization in the desired quantum dots is possible only when the barriers are sufficiently

high. The adiabatic clock signal for the tQCA cell is thus based on a sinusoidal function

that has been scaled to the interval [0, 1] (see Fig. 6). Dividing the function into two

sections, one monotonically increasing the other decreasing, we choose the first section as

the control signal in the switch phase and the second as the control signal in the release

phase. The hold and relax phase are kept constant; the former with barriers raised and

the latter with barriers lowered. The constructed signal has a gradual change in the

vicinity of raised barriers and thus allows more time for the electrons to successfully

localize in the appropriate quantum dots.

It is desired that the number of cells being controlled by one signal is as large as

possible, as it reduces the challenges that would be caused by attempting to deliver

a separate clock signal to every cell. Nevertheless, increasing the number of cells

controlled by one adiabatic clock diminishes the reliability of the switching process;

hence a compromise is often the only option. The adiabatic clock, however, enables

the introduction of the pipeline architecture. Since the clock signal is composed of four

phases, any QCA can be decomposed to smaller stages or subsystems controlled by four

phase shifted signals, each defining its own clocking zone (see Fig. 7). Let C0 denote the

base signal (as presented in Fig. 5) and Ci, i = {0, 1, 2, 3} the base signal phase shifted

by i phases. The phase shifted nature of the controlling signals allows the stages that

are in the hold phase to act as inputs for stages that are in the switch phase (see Fig. 7).

Therefore a subsystem after performing the computation can be designed to lock its

state and act as the input for another subsystem. As the transaction is finished the

second subsystem can start processing while the first subsystem is ready for processing

on new inputs.
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Figure 7. Four phase shifted adiabatic clock signals (a) and an example of the
adiabatic pipeline architecture applied to the ternary wire QCA (b). The wire is
decomposed to six stages (subsystems) controlled by four signals. This achieves
synchronization of data flow from top to bottom. The figure shows a snap-shot (marked
s in the signal graphs) from a sequence of data transfer along the wire. The first and
fifth cell are in the hold phase and serve as fixated inputs for the second and sixth
cell, which are in the switch phase, respectively. It can be noticed that due to the
pipelined architecture they can hold different data at the same time instant. The third
cell is in release state and the fourth cell is relaxed, so their influence on the data being
transferred is minimal.

4. Elementary ternary QCAs

We have simulated the basic ternary primitives (wire, inverter and AND/OR logic gate)

presented by Lebar Bajec et al in [7] under abrupt switching with a tunnelling energy

of t = −0.01 meV. The obtained results have been compared with those presented by

Lebar Bajec et al and for the problematic structures new pipelined architectures are

proposed.

4.1. The inverter

Lebar Bajec et al have focused their research foremost on the ternary inverter core

(Fig. 8a). The results the authors obtained show that the proposed implementation

behaves correctly. Simulations based on our quantum-mechanical model confirm their
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Figure 8. The core of ternary inverter (a) and the extension of the input section (b).
The behaviour matches with the truth table of ternary negation.

claims. Indeed, the balanced ternary logic negation can be expressed as

y = x ≡ −x, (9)

where x, y ∈ {−1, 0, 1} then if logical value x corresponds to the state of input cell X

and logical value y to the state of output cell Y it can be seen that the QCA acts as a

ternary inverter (see truth table on Fig. 8).

In order to construct more complex structures, the inverter core has to be connected

to other primitives. This is achieved by means of wires. Simulations based on our

quantum-mechanical model show that the interconnection of a wire to the input section

of the inverter core does not affect its behaviour even when abrupt switching is employed

(see Fig. 8b). On the contrary the interconnection of the inverter core’s output section

to a wire is more problematic, resulting in highly unstable behaviour, which mostly

favours the output state C. The issue can be solved by treating the inverter as a pipeline

of two or three stages. In the first case the input wire and inverter core are assigned to

one clocking zone (controlled by signal C0) and the output wire to another clocking zone

(controlled by signal C1), as in Fig. 9. In the second case the input wire is controlled

Figure 9. The solution of the inverter interconnection issue by using two pipeline
stages.

by signal C0, the inverter core by signal C1 and the output wire by signal C2. In order

to maintain a simple clocking scheme the two stage solution is preferred.
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4.2. The corner wire and fan-out

Our analysis shows that the ternary wire behaves correctly as long as the tQCA cells are

aligned in a straight line. The presence of a corner in a wire or a fan-out yields erroneous

behaviour, as presented in Fig. 10. Both structures result in erroneous output whenever

Figure 10. The corner wire and fan-out and their erroneous behaviour.

the input state is A or B. The problem arises from the conflicting situation in the cell

to cell interaction at the corner section of the QCA. For example, while observing the

behaviour of the corner wire (see Fig. 10a) during the transmission of state A (or B) from

input cell X to output cell Y it is expected that the second cell seizes the state of the

input cell and this should force the same state to the third cell. The fourth cell, however,

has a conflicting situation. It is expected to seize the third cell’s state, but due to their

diagonal arrangement it is also expected to seize the inverted state of the second cell.

The conflicting influence of the second and third cell prevents the fourth cell to occupy

the desired state and causes the electrons to favour localizing in quantum dots 6 and

8 (i.e. state D) thus achieving the maximal separation with the electrons in the other

two cells. This has a reflux effect on the third and consequently the second cell as well

as being transmitted to the output cell. The end result being an erroneous processing

output. Transmission of states C and D over the corner wire behaves as expected because

the states are alternating along the wire, which ensures that the electrons in cells two,

three and four are arranged so that their maximal spatial separation is achieved even

from the cell to cell point of view, and no conflicting situation emerges. A similar

scenario occurs in the case of the fan-out (see Fig. 10b). In the section where the wire

splits there are four cells in a conflicting situation. It is important to note that the

above described scenario takes place if abrupt switching is used as well as when all cells

are subjected to the same adiabatic clock signal.

The corner wire and fan-out issue can be easily solved using the pipelining concept.

As discussed the issue originates from the conflicting situation of the corner cells. It

can be solved by splitting the QCA to two subsystems (stages), controlled by two phase

shifted clock signals C0 and C1 (as depicted in Fig. 11). Concentrating on the corner line

this decomposition is designed so as to fixate the state of cells two and three and thus
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Figure 11. The pipeline architecture of corner wire and fan-out enables their correct
behaviour.

prevent the reflux effect from happening. Moreover it ensures the desired behaviour of

cell four. The latter is due to the larger influence of cell three than that of cell two. As

both of these have electrons fully localized with no probability of their tunnelling cell

four seizes the state of cell three. From the pipeline point of view this can be described

as bringing the correct state to the corner and only then taking it towards the other (one

or two) directions. Note, however, that if the corner cell (cell three) is not designated

to the clocking zone controlled by signal C0 the behaviour is incorrect as if without

adiabatic pipelining applied.

4.3. The symmetric inverter

In binary QCA the shortcomings of the inverter discussed in section 4.1 are elegantly

solved by a symmetric inverter. The latter, nevertheless, does not suffice in the ternary

QCA case. A thorough analysis (see Fig. 12) shows that the problem arises from the

Figure 12. The erroneous behaviour of the symmetric ternary inverter.

inverter’s mid section, which comprises a fan-out and two corner wires (one above and

one below). As it was demonstrated in the previous section the two structures exhibit

erroneous behaviour whenever they are controlled by a single adiabatic clock signal.
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Following the methodology of their amendment the symmetric ternary inverter can be

split into three stages (see Fig. 13a). The input section of the fan-out is assigned to

Figure 13. Two possible pipeline architectures of the symmetric ternary inverter; a
three stage (a) and a two stage (b) implementation.

clocking zone 0 controlled by signal C0, the output section of the fan-out and the input

section of the corner wire are assigned to clocking zone 1 (signal C1), while the inverter

core is assigned to clocking zone 2 (signal C2). The proposed clocking scheme can be

further simplified by combining the second and third stage into a single one controlled

by signal C1. The obtained two stage QCA (see Fig. 13b) produces correct results,

although, in a rather unusual way. More specifically, in the case of input states C and

D the symmetric ternary inverter behaves as expected. Input states A and B yield the

correct output states as well (B and A correspondingly), but, as a contrast to the three

stage solution, for input state A the ‘expected’ state transfer is carried out only over the

upper data path, whereas for input state B only over the lower data path (see Fig 13b).

4.4. The majority voting gate

The QCA called the majority voting gate, or shorter majority gate, represents one

of the trumps of binary QCAs. The structure is expected to provide as the output

state the state, which is present at the majority of the inputs. Besides its architectural

simplicity, one of the most praised features is its ability to preform logic AND and logic

OR operations, achieved simply by fixating one of the input cells to the corresponding

state. Lebar Bajec et al tried to preserve these properties in the ternary domain as

well by using the same QCA but substituting bQCA cells for tQCA cells [6, 7, 8]. To

solve the problems that have emerged the authors introduced two preconditions. The

first one states that only the input cell denoted as S can be used as the selector of the

gate’s behaviour, whereas inputs X1 and X2 can serve only as inputs to the selected

logic function (see Fig. 14). The second one states that state D is allowed only as an

internal state, thus it can not be used on any of the inputs.

The ternary logic functions AND and OR can in general multi-valued logic form be
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expressed as

y = AND(x1, x2) ≡ min(x1, x2), y = OR(x1, x2) ≡ max(x1, x2), (10)

where x1, x2, y ∈ {−1, 0, 1}. Using x1, x2 and y as the logic values corresponding to

states of input cells X1 and X2 and output cell Y the behaviour of the QCA, when

obeying the two preconditions, complies almost completely with the ternary AND and

OR logic functions. Indeed the truth table reveals only two erroneous output states:

OR(-1,1)=AND(1,-1)=D (see Fig. 14). In [7] Lebar Bajec et al presented a QCA

Figure 14. The QCA obtained by simple substitution of bQCA cells for tQCA cells
in the binary majority voting gate and the corresponding truth table. When obeying
the preconditions about the selector input S and the state D the QCA gives only two
erroneous outputs.

composed of three majority voting gates, which implements the ternary AND and OR

logic functions completely. It is, however, in view of the number of required cells quite

space consuming. Indeed even when disregarding interconnections of the individual

majority voting gates the number of required cells tripled with respect to the binary

QCA.

Following the idea of adiabatic pipelining we here present two QCAs constructed

by using the same number of cells as for the binary majority gate, which as a bonus

allow input flexibility (i.e. each of the three inputs can be chosen as the selector of the

QCA’s behaviour).

The first one continues with the basic idea of Lebar Bajec et al, i.e. it is directly

derived from the binary majority voting gate by simple substitution of bQCA cells

for tQCA cells, thus preserving the architecture of the binary majority voting gate. A

thorough analysis of the QCA’s behaviour using the quantum-mechanical model revealed

that a possible source for invalid outputs is the cornering relation of the three inputs.

The only two invalid output states are generated when the three inputs are symmetrical;

in states A, B, A or B, A, B respectively.
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The solution’s concept is thus to first compute the intermediate result and only

then transfer it to the output cell. More precisely first compute the minimum of the

remaining two inputs when the third is in state A and maximum when it is in state B

and then safely transfer this value to the output cell [25]. The approach can be easily

implemented using a three stage pipeline architecture (see Fig. 15). The input cells are

Figure 15. The three stage pipeline architecture of the ternary majority voting gate.

assigned to clocking zone 0 (i.e. controlled by signal C0), the internal cell to clocking

zone 1 (signal C1) and the output cell to zone 2 (signal C2). This ensures that when the

inputs are in the hold phase the internal cell is in the switch phase (i.e. slowly transiting

to a state that is in accordance with the states of all three inputs) and the output cell

is in relaxed phase. When the internal cell is in the hold phase the output cell is in the

switch phase whereas the input cells are in the release phase. This ensures that during

the output cell’s highest ‘activity’ the influence of the input cells will be minimal (in

fact their states will be close to neutral).

A thorough inspection of truth table 1, while maintaining the precondition about

state D, reveals that the QCA now behaves as ternary majority voting gate. The output

reflects either the state that has been present at the majority of the inputs or state C if

the majority can not be determined (e.g. in case of input combination A, B, C). Further

analysis reveals that due to this the choice for the selector of the gate’s behaviour is not

limited solely to input cell S, but the ternary majority voting gate computes the ternary

AND between the remaining two inputs whenever the third is in state A and ternary

OR whenever it is in state B.

When designing complex structures the restriction of state D being allowed only as

an internal state limits wires to odd lengths and this might at times prove to be quite

challenging. The pipelined ternary majority voting gate, as a plus, behaves correctly

even when this precondition is not obeyed. Indeed if one follows the initial logical value

assignment (i.e. state D is logical value 0 the QCA gives the correct output even if state

D is used as input state. There is only one restriction though; states C and D must

never appear as inputs simultaneously. The described feature simplifies design, as wires

of arbitrary length can be used as long as the lengths of interconnections to the three

inputs of the pipelined majority voting gate are all odd or even.
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Table 1. The full range of possible input states and the resulting outputs for the
pipelined ternary majority voting gate. The lighter marked (orange) outputs represent
erroneous output cell states. Note, however, that these occur only when states C and
D are applied as inputs simultaneously.

Although the described QCA proves successful it uses a three stage clocking scheme,

which could potentially introduce the adiabatic clock signal wiring problem that could

easily overwhelm the advantages won by the local interconnectivity and the pipelined

architecture. Research performed by Tahoori et al showed that the binary majority

voting gate implemented using 45deg rotated cells (i.e. as a crossing of three 45deg wires)

results in a more fault-tolerant QCA [26]. The ternary counterpart was obtained using

the same design philosophy as before, i.e. by substitution of bQCA cells for tQCA cells.

For the tQCA cell there is no advantage when rotating it for 45deg, however, a similar

effect (i.e. alternating states A and B) can be achieved with a diagonal arrangement

of cells. Although the obtained QCA under abrupt switching (or single clocking zone

adiabatic switching) shows erroneous behaviour its true advantage is manifested when a

pipeline architecture is applied. Indeed, its robustness diminishes the number of required

pipeline stages to two, thus simplifying the clocking scheme. There exist two possible

implementations. The first one (see Fig. 16a) uses signal C0 to control the input cells

as well as the internal cell and signal C1 to control the output cell. This way the QCA

begins by computing the state, which equals the inverse of the state representing the

majority of the states present on the three inputs, all in the process while the inputs

are still being applied, and only afterwards the inverse of this value is transmitted to

the output cell. The second implementation (see Fig. 16b) again designates the input

cells to clocking zone 0 (controlled by signal C0), but designates the internal and output

cell to clocking zone 1 (signal C1). This allows the fixation of the inputs followed by

the computation of the intermediate result and the state present at the majority of the

inputs simultaneously. Needless to say the resulting behaviour is the same as in the case

of the three stage pipelined majority voting gate. Therefore we denote this QCA as the

pipelined diagonal majority voting gate.
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Figure 16. The two adiabatic pipeline implementations of the diagonal ternary
majority voting gate.

5. Conclusion

This article presents the basic architectural guidelines for the design of ternary quantum-

dot cellular automaton (QCA) based processing elements. It shows that the introduction

of the adiabatic pipeline can successfully solve the problems related to the architecture

of elementary ternary logic QCAs, i.e. the corner wire, the fan-out, the inverter and the

majority voting gate. The assignment of appropriate clocking zones can be further used

to simplify the clocking scheme and thus diminish the challenges related to adiabatic

clock signal interconnection. What is more, the architectures of the proposed QCAs

equal the ones employed for the implementation of the corresponding binary logic

functions. This opens up the possibility to use design rules similar to those developed for

the binary QCA domain. Our current research is focused on the development of ternary

QCAs that implement a functionally complete set of ternary logic functions. These shall

represent the key building blocks of advanced ternary arithmetic-logic and memorizing

units, the principal components of ternary processors. It should also be noted that our

numerical results rely on quantum mechanical calculation based on realistic parameters

appropriate for GaAs/AlGaAs, but we are well aware of the implementation problems

in possible realization of operational devices and for this reason the switching dynamics

and material suitability are also part of our ongoing research.
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