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Abstract. The ternary Quantum-dot Cellular Automata (tQCA) were
demonstrated to be a possible candidate for the implementation of a
future multi-valued processing platform. Recent papers show that the
application of the adiabatic pipelining can be used to solve the issues
of the tQCA logic primitives. The architectures of the resulting tQCAs
become similar to their binary counterparts and the physical design rules
remain similar to those for the binary QCA domain. The design of com-
plex processing structures is, however, usually based on logic design. The
foundation of logic design is functionally complete set of elementary logic
primitives (functions). The currently available tQCA logic primitives, i.e.
tQCA majority gate and tQCA inverter gate, do not constitute a func-
tionally complete set. We here present a tQCA implementation of the
ternary characteristic functions, which together with the tQCA major-
ity gate and the ternary constants constitute a functionally complete set
according to multi-valued Post logic.
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1 Introduction

Quantum-dot cellular automata (QCA) were demonstrated to be a promising
processing platform that could bridge the technological limitations of current
CMOS technology. The foundations of binary QCA (bQCA) processing were
set in the early 1990s with the introduction of the bQCA cell followed by its
demonstration in a laboratory environment soon after [11]. Later research led to
the development of the first binary processor in QCA [1].

Exploiting binary logic, as the basis of elementary computer structures, is
a legacy of the technological limitations that computer designers had to over-
come in the past. The desired simplicity of data representation was achievable
only with the binary system and its realization with a simple two-state switch.
The most effective representative of such a two-state switch is the transistor or
CMOS circuit. The pioneers of computer design were well aware of the advan-
tages of multi-valued logic. Both, ternary logic and ternary based processing have
been extensively researched over the past five decades [2–4, 6, 16, 18]. The actual



working platform designs are, however, unable to keep up with the theoretical
advancement. The main obstacle is the shortage of building blocks that offer
native ternary support. Currently known solutions are built mostly on CMOS
technology, whose binary nature prevents effective and economically justifiable
ternary computer design.

The earlier mentioned QCAs were demonstrated as a possible solution to
the problem. The first advancement of QCA to native ternary processing was
made with the redesign of the bQCA cell. The cell’s geometry was altered to
allow the representation of three logic values and hence named as the ternary
QCA (tQCA) cell [7–9]. Adiabatic pipelining was later introduced to solve the
issues of the elementary tQCA logic gates [14, 15]. As a plus the architectures
of the proposed ternary QCAs equal those employed for the implementation of
the corresponding binary logic functions, which opens up the possibility to use
physical design rules similar to those developed for the binary QCA domain.

This is all encouraging but the design of complex processing elements is still
at its first steps. In order to promote efficient composition of complex ternary
processing elements one should follow a systematic logic design. The later is
based on a set of ternary logic functions, that constitute a ternary function-
ally complete set. Using it one can implement any arbitrary logic function. It
is therefore imperative to identify such a set and implement it in the tQCA
platform.

The principal functionally complete set of the binary logic system com-
prises binary conjunction, disjunction and negation and the corresponding binary
QCAs are available. Ternary logic, the simplest multi-valued logic, represents a
generalization of binary logic so one cannot simply use the binary functionally
complete set [2]. Similarly the designs proposed for the ternary CMOS platform
cannot be relied upon. These typically employ implementations, like the TXOR
gate, that exploit the platform’s physical properties.

Here we present a tQCA implementation of the ternary functionally com-
plete set according to chain-based Post logic [2]. The set comprises the ternary
majority gate and ternary characteristic functions. While the majority gate was
implemented using proven approaches from bQCA design [15], this was not the
case for the characteristic functions. They were developed by observing the be-
havior of simple tQCA segments and their subsequent composition according to
physical design rules, thus illustrating the bottom-up approach [5, 9].

In section 2 we present a brief overview of the tQCA, the adiabatic pipelin-
ing concept and the elementary tQCAs. In section 3 we continue with a brief
overview of the multi-valued Post logic and the corresponding ternary function-
ally complete set. In section 4 we describe the tQCA implementation of the
ternary characteristic functions.

2 tQCA overview

In general, a QCA is a planar array of quantum-dot (QCA) cells [11]. The funda-
mental unit of a ternary QCA is a tQCA cell [7]. It comprises eight quantum dots



arranged in a circular pattern and two mobile electrons. The electrons can only
reside at quantum dots or tunnel between adjacent quantum dots, but cannot
tunnel outside the cell. The Coulomb interaction between the electrons causes
them to localize in quantum dots that ensure their maximal separation (energetic
minimal state). The four arrangements, which correspond to energetic minimal
states (ground states), are marked as A, B, C and D (see Fig. 1). Relying on the

Fig. 1. The four possible arrangements that ensure maximal separation of electrons
are mapped to balanced ternary values -1, 0 and 1.

principle of ground state computing, the four states can be interpreted as logic
values. We here employ the balanced ternary logic, so A is interpreted as logic
value −1, B as logic value 1 and C and D as 0. The arrangement D is typically
not allowed (desired) for input or output cells [8, 9, 14]. Placing one or more cells
in the observed cell’s neighborhood, usually causes one of the arrangements to
become the favored ground state. The cell to cell interaction is strictly Coulom-
bic and involves only rearrangements of electrons within individual cells, thus it
enables computation. With specific planar arrangements of cells it is possible to
mimic the behavior of interconnecting wires as well as logic gates [19]. By inter-
connecting such building blocks more complex devices capable of processing can
be constructed.

The reliability of the behavior of a QCA device depends foremost on the
reliability of the switching process, i.e. the transition of a cell’s state that corre-
sponds to one logic value to a state that corresponds to another and vice versa.
It is achieved by means of the adiabatic switching concept, where a cyclic sig-
nal, namely adiabatic clock, is used to control the cells’ switching dynamic [20,
14]. The signal comprises four phases. The switch phase serves the cells’ gradual
update of the state with respect to their neighbors. The hold phase is intended
for the stabilization of the cells’ states when they are to be passed on to the
neighbors that are in the switch phase. The release phase and the relax phase
support the cells’ gradual preparation for a new switch.

Recent research [15] showed that the correct behavior of tQCA logic gates
requires a synchronized data transfer, achievable through a pipelined architecture
based on the adiabatic clock. The four phased nature of the clock signal allows
any tQCA to be decomposed to smaller stages, or subsystems, controlled by
phase shifted signals, each defining its own clocking zone. Let 0 denote the
clocking zone controlled by the base signal (usually the clocking zone of the
input cells) and i = {0, 1, 2, 3} the clocking zone controlled by the base signal



phase shifted by i phases. Subsystems that are in the hold phase act as inputs
for subsystems that are in the switch phase. A subsystem, after performing its
computation locks its state and acts as the input for the following subsystem.
As the transaction and processing in the second subsystem is finished it can
lock its state while the first prepares for accepting new inputs. With the correct
assignment of cells to clocking zones, the direction of data flow can be controlled.
Large regions of nearby cells are usually assigned to the same clocking zone in
order to eliminate the challenges that would be caused by attempting to deliver
a separate clock signal to every cell.

The latency of a QCA circuit is determined by the number of clocking zones
along its critical path. A sequence of four clocking zones causes the delay of
one clock cycle. Consequently minimizing the number of clocking zones leads to
better designs [13].

The tQCA logic primitive that enables propagation of data from the input
cell to the output cell (see Fig. 2) is called tQCA wire. When the input cell’s

Fig. 2. Using clocking zones for a robust tQCA wire: straight wire (a), corner wire (b)
and fan-out (c).

state is A (logic value −1) or B (logic value 1) all cells propagate the same state.
However, when the input cell’s state is C (logic value 0) the cells propagate the
state in an alternating fashion. This effectively means that wires have to be
of odd lengths [9]. Having that in mind the tQCA wire can be described as a
processing element performing the logic function:

y = w(x) = x, (1)

where x ∈ {−1, 0, 1} corresponds to the state of cell X and y ∈ {−1, 0, 1}
corresponds to the state of cell Y. The correct behavior of the corner wire and
fan-out is ensured by means of a pipeline of two stages, as presented on Figs. 2b
and 2c. The first stage ensures the propagation of the input value to the corner,
and the second stage ensures its propagation towards the output cell.



3 The functionally complete set

In the 1920s Emil Post introduced a logic system intended for manipulation
of multi-valued logic functions, known as chain-based Post logic [17]. A multi-
valued logic function is a discrete function whose input and output variables
take two or more truth values. Formally, an n variable multi-valued (m-valued)
function f(x1, . . . , xn) is a mapping f : Mn 7→ M , with the variables xi taking
truth values from totally ordered set of m elements, M [2]. In case of m = 2 Post
logic reduces to Boolean logic, which is currently employed in computer design,
however this article focuses on the ternary logic system with m = 3. Due to the
fact that it does not matter how the elements are denoted [18], we here use the
balanced set of elements, M = {−1, 0, 1}.

An arbitrary n variable multi-valued function can be realized as a single
primitive or as a composition of primitives. In logic design a primitive is often
called a logic gate. The set of all n variable m-valued functions denoted Om

(n)

consists ofm(mn) functions. In order to make logical design practical is it essential
to identify a subset F of functions, i.e. logic gates, whose composition can be
used to realize any function from Om

(n). Such a set F is denoted a functionally
complete set and its elements are denoted elementary logical primitives.

Well known functionally complete sets in Boolean logic are {OR,NOT}
and {AND,NOT}, where OR denotes binary disjunction, AND binary conjunc-
tion and NOT binary negation. Post generalized binary disjunction to multi-
valued logic. The multi-valued disjunction, denoted ∨, is introduced as the multi-
variable max operator that returns the highest truth value of all n input vari-
ables:

y =
∨

i

xi ≡ max(xi), i = 1, 2, ..., n. (2)

The symbol xi ∈ M denotes the i-th multi-valued input variable. Similarly
the generalization of binary conjunction is multi-valued conjunction, denoted ∧,
introduced as multi-variable min operator returning the lowest truth value of n
input variables:

y =
∧

i

xi ≡ min(xi), i = 1, 2, ..., n. (3)

With the generalization of the binary negation achieved as

y = ¬x ≡ −x, (4)

where x ∈ M we can obtain sets {∨,¬}, {∧,¬} or {∨,∧,¬}, but in ternary logic
these are not functionally complete. Post solved the problem with the function
called cyclic negation, denoted x. It is given as expression

y = x ≡ ((x+ 2) mod m)− 1, (5)

where x ∈ M . Post proved that the two-variable ∧ and x constitute a function-
ally complete set. After one complete set is identified, others can be found by
constructing logic gates by means of which one can implement all the elementary



primitives belonging to the original set. Every set of functions created in this
way is also functionally complete.

The selection of the functionally complete set depends on the properties of
the chosen implementation platform. Obviously the elementary logic primitives
should be as compact as possible so as to minimize the space they occupy and
subsequently their cost and they should exploit the platform’s advantages.

In order to find optimal solutions logic design of complex processing struc-
tures relies upon various minimization techniques. Well known approaches are
the Karnaugh map and the Quine-McCluskey algorithm, which both operate on
functions expressed in the normal form [2]. The functionally complete set {∧, x}
is not suitable for representing functions in a normal form. For this purpose we
would need the functionally complete set consisting of ∧, ∨ and characteristic
functions. The characteristic function termed also the unary literal operator of
the multi-valued variable is defined as

y = fz(x) =

{

1, if x = z

−1, otherwise,
(6)

where x, z ∈ M . The disjunctive normal form of the ternary cyclic negation can
be given as

x = (f−1(x) ∨ 0) ∧ (f0(x) ∨ 1) ∧ (f1(x) ∨ −1) (7)

which shows that two-variable ∧, two-variable ∨ together with literals f−1, f0,
f1 also constitute a functionally complete set [5].

The tQCA implementation of the ternary ∧ and ∨ function is based on
tQCA majority voting gate. Due to the lack of implementations of other multi-
input ternary logic functions, it is currently the fundamental building block in
tQCA design. It is constructed as a crossing of three ternary wires and can
be implemented in two possible ways [15] presented in Fig. 3. The structure has

Fig. 3. Two possible pipeline implementations of the ternary majority voting gate.

three input cells denoted X1, X2 and X3, a device cell in the center and an output
cell Y. It acts as majority voting logic; the output reflects either the logic value
that has been present at the majority of the inputs or logic value 0 if the majority
cannot be determined (e.g. in the case of the input combination x1 = −1, x2 = 1,
x3 = 0). The described behavior can only be achieved through an appropriate



assignment of clocking zones. The gate’s behavior can be described with the
logic function:

y = m(x1, x2, x3) = x1x2 ∨ x2x3 ∨ x1x3, (8)

where x1, x2, x3 ∈ M correspond to the states of input cells X1, X2, X3 and
y ∈ M corresponds to the state of the output cell Y. The ternary two variable ∨
and ∧ functions can be expressed as

y = x1 ∨ x2 = m(1, x1, x2)
and
y = x1 ∧ x2 = m(−1, x1, x2),

(9)

where x1, x2, y ∈ M . That is, the ternary disjunction can be implemented by
fixing one input logic value of the ternary majority voting gate to 1, and the
ternary conjunction can be implemented by fixing one input logic value to −1.

4 Implementation of the tQCA characteristic functions

The implementation of ternary characteristic functions is based on the bottom-
up approach, i.e. the concept of combining compact and simple structures.
Searching over all possible solutions turns out to be computationally complex
[12]. Therefore the search was focused on symmetrical structures with odd num-
ber of inputs. Various tQCA structures composed of a small number of tQCA
cells grouped in to one clocking zone were constructed. Their behavior was ana-
lyzed using the ICHA simulation approach [10, 15]. It was based on the following
parameters: quantum dots had a diameter of 10 nm, the distance between ad-
jacent quantum dots was 20 nm, cell centers were placed on a 110 nm grid. All
other relevant parameters were evaluated for a GaAs/AlGaAs material system.

The truth tables for the most promising tQCA structures were computed
by mapping the tQCA cell’s states to appropriate ternary logic values, as was
presented in chapter 2. The obtained tables represented the search space for
iterative deepening based design method [5].

Following the described approach three structures were used. The simplest
one is relies on the fact that two cells arranged diagonally, assigned to the same

Fig. 4. The ternary inverter (a) and its behavior (b).

one clocking zone, assume alternate states when one is in state A or B and the



same state when one is in state C or D Fig. 4a. The structure performs as a unary
function I : {A,B,C,D} 7→ {A,B,C,D}. Comparing the behavior in Fig. 4b and
equation (4) reveals that the given structure evaluates ternary negation where
x ∈ M corresponds to the state of cell X and y ∈ M corresponds to the state of
cell Y.

The most useful structure, which made the implementation of ternary char-
acteristic structures feasible is presented in Fig. 5. The structure has three input

Fig. 5. The structure S1 used for implementation of characteristic functions (a) and
its behavior (b). The combinations marked with black rectangle are basis of f−1 and
f1 implementation and the combinations marked with shaded rectangle are basis of f0

implementation.

cells denoted X1, X2 and X3, three device cells and an output cell Y. The struc-
ture performs as a three variable function S1 : {A,B,C,D}3 7→ {A,B,C,D}.

Observing its behavior where cells X1 and X2 are fixed to state B and cell X3

acts as input cell (see black rectangle in Fig. 5b) and comparing with equation
(6) reveals that the structure can perform as f−1 or f1 literal expressed as

y = f−1(x) ≡ S1(B,B, X)
and
y = f1(x) ≡ S1(B,B, I(X)),

(10)

where X ∈ {A,B,C} corresponds to the logic variable x ∈ M and y ∈ M

corresponds to the state of cell Y (see Fig. 6).
The construction of the structure implementing f0 literal proved to be more

difficult. The basis represents the behavior marked with the shaded rectangles
in Fig. 5b. If cell X2 is fixed to state A and cell X3 is declared as an inverted
input, the state of cell X1 has to change according to the input state, i.e. in the
case of input states A or C the required state is D, otherwise the required state
is B. This was achieved with the structure presented in Fig. 7a. The structure
has three input cells denoted X1, X2 and X3 and an output cell Y. Observing its



Fig. 6. The structures implementing f−1 literal (a) and f1 literal (b).

behavior (see Fig. 7b) one can notice that the state of output cell Y is not well
defined (marked as N) for all possible input combinations. However, for input



Fig. 7. The structure S2 (a) and its behavior (b).

combinations where cell X1 is fixed to state A and cell X3 is fixed to state D

(see shaded rectangle in Fig. 7b) the structure performs as a unary function
S2 : {A,B,C,D} 7→ {B,D}. Therefore, the f0 literal is expressed as

y = f0(x) ≡ S1(S2(X),A, I(X)), (11)

where X ∈ {A,B,C} corresponds to the logic variable x ∈ M and y ∈ M

corresponds to the state of cell Y (see Fig. 8).

Fig. 8. The structure implementing f0 literal.



5 Conclusion

A functionally complete set represents the foundation of logical design. Here
we present the most general functionally complete set comprised of the ternary
characteristic functions, the ternary disjunction and the ternary conjunction.
The tQCA that implements the ternary disjunction or conjunction is actually
the ternary majority gate, but the tQCAs that implement the ternary character-
istic functions have been developed using the bottom-up concept. The presented
architectures are not optimal, in the sense of space requirement and the number
of required adiabatic phases, but it is a first step. In the next iterations we will
search for more optimized solutions, however as the foundations are set we can
also focus on the design of the ternary processor building blocks, as well.
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