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Abstract It is not exactly known why birds aggregate in coordinated
flocks. The most common hypothesis proposes that the reason is
protection from predators. Most of the currently developed examples
of individual-based predator-prey models assume predators are
attracted to the center of a highly coordinated flock. This proposed
attraction of a predator to a flock would appear to be contradictory
to an alternate hypothesis that flocks evolved as a protection
against predation. In an attempt to resolve this apparent conflict,
in this article we use a fuzzy individual-based model to study three
attack tactics (attack center, attack nearest, attack isolated) and
analyze the success of predation on two types of prey (social
and individualistic). Our simulations revealed that social flocking
(as opposed to individualistic behavior ) is the optimal anti-predatory
response to predators attacking mainly isolated individuals.
1 Introduction
The study of collective behavior is a fascinating field that analyzes how simple actions of an individual
influence the complex global dynamics of a group. Aristotle once stated: “The whole is greater than the
sum of its parts”—a statement that describes the essence of collective behavior. Typical examples of
collective behavior are flocks of birds, schools of fish, and swarms of insects—phenomena that can
be easily observed in nature. Collective behavior is also interesting because similar patterns emerge at
smaller scales (cellular level) [6, 44].

Even though collective behavior is a common sight, it is still surrounded by mystery [27]. Several
different hypotheses in the literature suggest reasons why animals sometimes coalesce into organized
groups. The most common one proposes that such groups may function as an effective defense against
predators [12, 22, 27, 37]. This hypothesis is supported by evidence that animals in groups may bene-
fit from an increased probability of detecting a predator [9], individuals in groups may reduce the
amount of time spent for predator vigilance [7, 42], and an individual in a large group may have a lower
probability of being attacked by a predator [10]. Other hypotheses suggest that aggregating animals may
benefit through higher mating efficiency, and more efficient foraging [23]. Some studies claim that fish
schools or bird flocks save energy because of hydrodynamic or aerodynamic benefits [30]; however, the
opinions on this matter are contradictory [3, 38, 48]. Our work focuses mainly on bird flocks; however,
25, 1000 Ljubljana, Slovenia.

59 (2014) doi:10.1162/ARTL_a_00135



J. Demšar and I. Lebar Bajec Simulated Predator Attacks on Flocks: A Comparison of Tactics
some of the results can also be applied to fish schools, since they have some similarities in structure and
behavior, in that they both operate in a three-dimensional world [22].

Bird flocks are among the most widely observed, yet least understood, phenomena of collective
behavior, mostly because of the difficulty of obtaining field data and, with the exception of a few
types of urban flocks, the unpredictability of the appearance of highly organized flocks in nature
[15]. Two types of highly organized bird flocks emerge in nature—cluster flocks, demonstrated
by pigeons and starlings, and line flocks, such as can be seen in groups of geese flying in a vee
[14]. Every evening, when birds that fly in organized groups return to their roosting areas, small
flocks coalesce into giant cluster flocks, often numbering tens of thousands of birds. Birds may then
perform complex aerial maneuvers before finally settling in their roosts [27]. Such behavior can often
be seen every evening at the same place, so it might appear that birds flying in such flocks are
actually attracting predators and making it easy for them to attack the flock, which runs counter
to the idea that highly coordinated flocks evolved to reduce the impact of predation.

Complex flocking behavior can emerge if individuals follow simple rules. In 1987, Reynolds [41]
published a ground-breaking article that presented the first computer flocking animation (boids).
At the same time, Heppner and Grenander [16] were working on a similar project in which they
modeled birdsʼ behavior with stochastic nonlinear differential equations. In these two and most
subsequent models, equations govern the behavior of the artificial animals (animats).

Our model uses fuzzy logic [51] and fuzzy-rule-based systems [5, 32], rather than equations, to
develop the behavior of artificial animals.

Some current state-of-the-art models are in three dimensions and incorporate some simplified
aerodynamics [17]. To make an in-depth study of shapes and patterns that emerge within the flock
during a predator attack, a three-dimensional model would be required [13], but for the purpose of
our study a two-dimensional model suffices, since some researchers suggest that the dimensionality
of the model minimally affects the results of the simulations [18, 19, 24], and others believe that
models should be as simple as possible [4].

Various authors have upgraded the basic models to add additional functionalities. Moškon et al.,
for example, used fuzzy logic to simulate the foraging behavior of artificial birds [33]. There are also
several models that implement predators. All of them are based on Reynoldsʼ model, and most of
them use a predator that attacks the center of the flock [20, 29]. This tactic may be right for some
species of real fish; a swordfish, for example, in nature typically attacks the center of a prey school.
In the first attack it disperses the school, and in the following attacks it focuses on the individual fish
that become separated from the rest of the group [45]. Compared to birds, however, fish may have
better perception of the environment because of the lateral line, and schooling might be used to
confuse the lateral line of predators [25]. Assuming that birds do not have a sense like the lateral
line, avian predators in nature might not attack in such a fashion.

Others that studied predator-prey dynamics in collective behavior mostly focused on a flockʼs
response to the predatorʼs attack. For example, Inada et al. focused on common escape patterns that
emerge [20], while Lee et al. analyzed how the size of the flocks changes during an attack [29].

In both cases the predator attacked the center of the flock. With respect to the hypothesis that
flocks form as a defensive mechanism, targeting the center of the flock in hope of catching a prey
might be viewed as a tactic based on pure luck. As already stated, this attack tactic might not be used
by avian predators, except maybe for the first attacks, where the goal might be to disperse the prey in
order to prepare for other tactics whose positive outcome was more probable. This research is not
the first to propose different attack tactics; Nishimura [35, 36] was the first to study target selection
mechanisms. The key differences between this research and Nishimuraʼs studies are: (1) we use
fuzzy logic; Nishimura used differential equations; (2) we model target selection through “realistic”
visual perception; Nishimura expressed the probability of a prey becoming a target through a
mathematical equation that does not take into account the position of the predator relative to the
flock, nor its orientation; (3) in our model the prey that “sees” the predator tries to escape; in
Nishimuraʼs model it does not; and (4) we study social versus individualistic prey behavior;
Nishimura studies ordered, partially disordered, and fully disordered prey motion.
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According to Nishimuraʼs study [36] the best predator tactic is to attack a peripheral target, and
not an isolated target, as can be observed in nature [21, 45]. The reasons for this conclusion are
two: (a) the equation Nishimura uses for a predator targeting isolated prey (Nishimuraʼs strategy S)
will not select any target if none exists that has a large enough separation from the flock; and
(b) Nishimuraʼs predator has perfect vision (i.e., it is able to perceive all prey), and it can happen that
the predator will select a target that is on the opposite side of the flock and therefore requires
a substantial amount of time to reach it. The first reason is unrealistic in that, of the three types of
motion that Nishimura studies (ordered, partially disordered, and fully disordered), ordered motion, a
rare event in nature, is a clear favorite. The second is unrealistic in that the selected target potentially
might not be visible to the predator at all, due to occlusion.

The analysis of predator-prey pursuit is interesting not only from a biological perspective, but
also from the perspective of control theory [34, 49]. The control theory approach could potentially
represent an alternative, more mathematical approach to our study. However, we believe our fuzzy,
individual-based model with its differences from Nishimuraʼs approach permits a simulation whose
behavior is closer to that of real birds.
2 Methods

The basis for our work is an existing fuzzy-logic-based bird flocking model made by Lebar Bajec
et al. [28], called synflocks. An artificial animal, an animat, can be described using three qualities:
(a) its perception of the environment, (b) its drives, and (c) its action selection. Perception acts as a filter
for important information. Drives define desired actions that will fulfill the animalʼs needs. Action
selection combines these actions and performs the appropriate locomotor response. Assuming the
artificial universe consists only of artificial animals with no environmental factors like artificial trees,
then an artificial animalʼs behavior is dependent mostly on the position, direction, and speed of the
neighbors it perceives.

The animats in our model use the basic Reynolds drives—cohesion, separation, and alignment [41].
Cohesion simulates attraction toward flock-mates and is modeled as the animatʼs tendency to fly
toward distant flock-mates when there are none nearby. Separation is a drive that helps the animats
to avoid collisions—it forces an individual to fly away from flock-mates that are too close. With the
third drive—alignment—animats coordinate their velocity (direction and speed of flight) with flock-
mates. A visual representation of the drives can be seen in Figure 1. In our model the drives are
described with simple linguistic if-then rules. Fuzzy logic is used for the transformation of the rules
into numerical values: the desired change in direction and speed of each individual animat. More
precisely, the if-then rules are used in a Mamdani fuzzy inference system [32] (see Appendix).

The original Reynolds model and most existing models are based on metric distance. In these
models every animat within a limited radius influences the behavior of the observed animat; if an
animat is outside that radius, it does not have any influence. Nevertheless, recent research [1, 2] sug-
gests that in nature only around seven nearest neighbors influence an individual. As this technique
is already gaining support in current state-of-the-art models [17], we likewise use a number-limited
neighborhood (topological distance) instead of a radius-limited neighborhood (metric distance). In
models based on topological distance, only a fixed number of nearest animats are influential, regardless
of their distance.

Our model uses topological distance and concentrates on vision as the principal means of neighbor-
hood perception. Our animatʼs field of vision is 300° wide, with a blind angle of 60° directly behind
it. Most current models presume that birds have “perfect” vision and do not allow for the occlusion
of distant birds due to other birds flying in the flock. Yet a recent study by Kunz et al. [24] shows that
obstruction of vision increases the realism of simulations. Our model thus takes into account only seven
visible (non-occluded) nearby animats (see Figure 1).

Predator and prey behaviors in our study are based on rules extracted from relevant theoretical
literature and field observations. We modeled our simulations after a common scenario, where a
Artificial Life Volume 20, Number 3 345
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peregrine falcon (Falco peregrinus) is attacking a flock of European starlings (Sturnus vulgaris). In
horizontal flight, the most economical flight speed (as to the amount of energy spent for flight
propulsion) is around 60% of the birdʼs maximum speed [46]. Let us call this speed the optimal cruising
speed. The optimal cruising speed of a European starling is 11 m/s, and the optimal cruising speed of a
peregrine falcon is 13 m/s [46]. In accordance with these values we set the maximum speed of our
prey animat to 18 m/s, and the maximum speed of our predator animat to 22 m/s. Note that we
presumed that the peregrine falcon was not hunting by using its characteristic hunting stoop (high-
speed dive), when it can reach speeds up to 157 m/s [47]. The minimum flight speed, in nature and in
our model, is around 40% of the maximum flight speed [46], which amounts to 7.2 m/s for prey
animats and 8.8 m/s for the predator animat. To define the predator-prey relationship we introduced
three additional drives—hide, seek, and regulate speed. The preyʼs behavior is governed by the three basic
drives (cohesion, separation, and alignment), and in addition hide and regulate speed (see Appendix for
their explanation). The hide drive helps the prey to survive, as it forces it to fly away from the attack-
ing predator; it was tuned so that the direction of the preyʼs escape matches field observations by
Handegard et al. [11]. Regulate speed is only active when the hide drive is inactive—when the predator
is hidden from the preyʼs sight. This drive encourages prey to fly with their optimal cruising speed. The
Figure 1. (a ) Perception of nearby neighbors. The black bird is the observed individual. The dark gray birds are the
perceived nearby birds that influence the observed birdʼs behavior. The white and outlined birds are either occluded
by nearer birds (shaded areas), outside the observed birdʼs field of vision (hatched area), or outside the number-
limited range. Red arrows represent the resulting force vectors of the three basic drives—(b) alignment, (c) cohesion,
and (d) separation.
346 Artificial Life Volume 20, Number 3
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predatorʼs behavior is guided only by the seek drive (see Appendix for its detailed explanation). With
the seek drive the predator tries to catch the selected target.

We implemented three different attack tactics (see Figure 2). In our first tactic the predator
attacks the center point of the seven perceived prey. This mimics the tactic in which a predator
attacks the center of the flock in hope of hitting a target, but takes into account the limited amount
of information available—distance, relative position, difference in speed, and difference in heading
of the perceived artificial animals.

In the second tactic, the predator attacks the nearest of the seven perceived prey. The nearest
prey might be the one that is also the fastest to reach, therefore making it a logical target for a predator.
If a real predator chooses its prey in such a fashion, then flocking might work as a mechanism to
reduce an individualʼs domain of danger [10]. The domain of danger is defined as the area in which
the observed individual is the predatorʼs nearest neighbor. Obviously, the average size of the domain
of danger decreases if the number of birds in the flock increases, thus favoring tight, highly organized
flocks. By reducing the domain of danger an individual lowers the probability of being attacked by the
predator, thus possibly increasing its chances of survival.

A predator using the third tactic attacks the most isolated of the seven perceived prey. In our
study the most isolated prey is the one that has the largest angular distance to its nearest neighbor. We
define angular distance as the angle between a potential target and its nearest neighbor—from the
predatorʼs viewpoint. From a predatorʼs viewpoint, isolated prey appear to have a large domain of
danger because they are the most separated from the rest of the perceived prey. From the predatorʼs
perspective they would require the largest amount of time to decrease their domain of danger—time
that is available to the predator to catch them. If we presume that flocking is indeed a protection
mechanism, we can assume that the most isolated bird is the one that is the most vulnerable, making
it a logical target for a predator.
3 Results and Discussion

To recapitulate, the predator in our model uses one of the following three attack tactics: (1) attack
center (i.e., attack the center point of the seven perceived prey), (2) attack nearest (i.e., attack the nearest
of the seven perceived prey), and (3) attack isolated (i.e., attack the most isolated, from the predatorʼs
point of view, of the seven perceived prey). In addition to escaping predator attacks and regulating
their flight speed, the prey can exhibit two types of behavior: (1) social behavior (i.e., prey obey the
cohesion, separation, and alignment drives) or (2) individualistic behavior (i.e., prey ignore the cohe-
sion and alignment drives, but obey the separation drive to avoid collisions). In total this gives six
combinations, through which we wished to answer the following questions: (1) what is the optimal
Figure 2. The three attack tactics: (a) the predator attacks the center of the seven perceived prey, (b) the predator attacks the
nearest of the seven perceived prey, (c) the predator attacks the most isolated of the seven perceived prey. The red bird is the
predator, and in the electronic version, the red arrow represents the resulting force vector of the predatorʼs seek drive.
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predator tactic, given a certain prey behavior, (2) what is the optimal prey behavior, given a certain
predator tactic.

To provide answers to these questions we ran simulations where small cluster flocks consisting of
20, 40, or 60 social or individualistic prey were attacked by a predator from eight different bearings,
relative to the flock. One of the starting configurations along with the eight bearings can be seen in
Figure 3. The different bearings were used to eliminate any dependence of the simulationʼs results
on the predatorʼs bearing (e.g., a head-on attack versus an attack from behind). This gives a total of
432 simulations (72 per configuration, i.e., selected predator attack tactic and prey behavior ). Each
simulation was ran for 900 steps (frames)—30 s in our visualizations. We measured the time the
predator needed to catch a prey. If the predator failed to catch the prey, the time to catch was set to
900 frames. The histograms of the time to catch for all simulations can be seen in Figure 4; a more
in-depth discussion is given in the following sections.
3.1 Optimal Predator Tactic
Our simulations suggest that the best tactic for a predator attacking flocks of social prey is the attack
isolated tactic (t = 3.01, df = 142, p = 0.003). It would appear that isolated prey benefit the least
from the advantages of flocking. On average the predator needed 279.74 frames (SD = 72.29)
to catch an isolated prey. The predator whose tactic was to attack the nearest prey needed
Figure 3. One of the starting configurations along with eight bearings of the predatorʼs attack.
348 Artificial Life Volume 20, Number 3
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316.74 frames (SD = 75.76) to catch its target, and the one whose tactic was attack the center of the
seven perceived prey needed 845.08 frames (SD = 165.04).

With individualistic prey the best tactic for the predator is the attack-nearest tactic (t =
5.12, df = 140, p < 0.0001). This finding makes sense, since the predator will get to the nearest
prey faster than to those that are farther away. Predators that used this tactic needed, on average,
177.31 frames (SD = 33.95) to catch a prey. Predators that attacked isolated prey caught a prey in
208.06 frames (SD = 38.04). The attack-center tactic proved to be the worst, as the predator required
832.97 frames (SD = 198.89) to catch a prey.

The predator that used the attack-center tactic was, in most cases, not successful. In other words,
it did not catch a prey in the 900 frames for which we ran the simulations (regardless of whether the
prey was social or non-social). Thus the attack-center tactic proved to be the worst one, regardless of
the preyʼs behavior.
Figure 4. The influence of the predatorʼs attack tactic and preyʼs behavior on survivability of prey. Presented are six histograms
of the predatorʼs time to catch in corresponding simulation runs (n = 72). Dark gray histograms present the time to catch in
simulations with social prey, whereas light gray histograms present the time to catch in simulations with individualistic prey
(cohesion and alignment drives not used). In the electronic version, red lines present the corresponding median time to catch.
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As for the predatorʼs best tactic overall, regardless of the preyʼs social or individualistic behavior,
no difference was found between the two most successful tactics, attack nearest and attack isolated
(t = 0.34, df = 264, p = 0.73).

3.2 Optimal Prey Behavior
When the predator used the attack-center tactic, no difference was found for the average time
to catch between social and individualistic prey (t = 0.39, df = 137, p = 0.69). In both cases the
predator was rarely successful, which is a direct result of the predatorʼs tactic, which is based on
pure luck.

With predators whose tactic actually tries to optimize the chance of a positive result, however, the
average time to catch is longer when prey behavior is social than when it is individualistic—more so
when the predator targets the nearest prey (t = 14.25, df = 98, p < 0.0001) than when the predator
uses the attack-isolated tactic (t = 7.42, df = 108, p < 0.0001).

The best tactic for prey attacked by a predator appears to be social behavior.

3.3 Biological Relevance
Fine-scale sonar tracking of interactions among predatory fish and their schooling prey performed
by Handegard et al. [11] suggests that the most successful predators attack from behind. In our
simulations, when the predator attacked from the side or front, the prey always managed to escape
the initial attack. The predator was successful in one of the successive attacks that occurred from
behind. Attacks from behind appear to be much more successful than other strategies, as in some
cases, when the predator attacked from behind, the predatorʼs initial attack was already fruitful. An
example of the corresponding chase and escape paths in the case of a single predator attacking a
single prey is presented in Figure 5.

In 1983, Pitcher and Wyche [39] defined several escape patterns. In our simulations, when the
predator attacks the center point of the seven perceived prey, prey show similar escape patterns to
Figure 5. Predator attacking a single prey from three main directions: (a) behind, (b) head on, and (c) side.
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those in nature and existing fish school models. Indeed, we managed to spot three of the escape
patterns defined by Pitcher and Wyche [39]: herd, split, and fountain. The herd pattern can be seen at
the beginning of a predator approach. The herd pattern then morphs into either split or fountain.
Split occurs when a large flock is divided into smaller ones. A typical characteristic of the fountain
pattern is that the split flock rejoins behind the predator. These patterns can be seen in Figure 6.

A more quantifiable measure was defined by Lee et al. [29], who defined three phases that can be
seen in artificial flocks during a predator attack—compression, expansion, and relaxation (Figure 6). In
the first phase of an attack the flockʼs size decreases; this phase is called compression. In the
second phase—expansion—prey try to move away from the predator. By doing this, the flockʼs size
increases. In the last, phase prey try to regroup, so the flockʼs size again decreases. This last phase is
called relaxation.
Figure 6. Three common patterns in the artificial flockʼs response to a predator attack: (above) from herd (frames 30–120)
to split (frames 120–240), (below) from herd (frames 60–330) to fountain (frames 330–510). In the snapshots below one
can also notice the phases in the flockʼs response: before attack (frame 60), compression (frames 60–180 and 510–600),
expansion (frames 270–510), and relaxation (frames 600–690). In the electronic version, the red bird is the predator; black
birds represent prey. For the sake of clarity the birds were scaled by 200% (above) and 300% (below).
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The three phases can easily be observed by tracing the artificial flockʼs flock size, as defined by Lee
et al. [29]:

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1r
2
i

q

N
; ð1Þ

where ri is the distance from the center of the flock to the ith individual, and N is the total number
of animats in the flock. All of our simulations showed a similar response of the artificial flock to
a predatorʼs attack. Figure 7 visualizes how, in our simulations, the flock size changes through
time, both when the artificial flock is under threat from the predator and when there is no predator
nearby. The flock size is measured in body lengths; one body length equals 20 cm, which is the size
of a European starling.

4 Conclusion

Our simulations show that the least successful predator is the one that attacks the center of the
flock. They suggest that with predators whose tactic tries to optimize the chance of a positive out-
come, social behavior is more advantageous than individualistic behavior, which strengthens our
belief in the hypothesis that cluster flocking can be a mechanism for protection from predators.

The behavior of our artificial flocks appears to be comparable with that seen in flocks in nature.
The average distance from the nearest neighbor is around four body lengths (one body length equals
20 cm) [2, 31, 40]; the response of an artificial flock to a predator attack is similar to field obser-
vations [29], and similar escape patterns to those in nature emerge [39]. Our results also show that
the most successful predators attack from behind [11] and seek isolated targets [21].

Our results seem to suggest that cluster flocking around a roost is paradoxical, because although
its structure might provide some protection against a predator attack, its very existence invites a
Figure 7. Plot of the flock size of an artificial flock consisting 20 animats. The black line shows the flock size over 900
simulation steps when there is no predator nearby. In the electronic version, the red line shows the flock size over
900 simulation steps when the flock is under predator attack. A clear example of flock expansion is marked with a light
gray background, and dark gray is used to mark an example of flock compression. As predator attacks occur one after
the other, there is no clear example of flock relaxation.
352 Artificial Life Volume 20, Number 3



J. Demšar and I. Lebar Bajec Simulated Predator Attacks on Flocks: A Comparison of Tactics
predator attack, and (at least in nature) there are always isolated individuals that can be picked off. It
suggests also that at least in some circumstances, which may or may not be common in nature, tight
cluster flocking can be of benefit to the flock as a whole, although it does not provide absolute
protection to individuals in the flock.
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Appendix: Supplementary Material

In our model the animat is defined as a three-stage process [26]: perception, drives, and action selec-
tion. For each animat the perception stage extrapolates data about the universe (other animats) that
is available to the observed animat. In the drives stage, based on these data, a set of actions is com-
puted that would fulfill individual needs of the modeled artificial animal. The action selection stage
merges the actions and executes the locomotor response, thus changing the state of the universe.
A.1 Perception

In our model the universe consists of animats only; the universe is in essence a list of animats. To
extrapolate data about the universe, as a first step, the observed animat is removed from this list, and
the animats remaining in the list are sorted based on their distance from the observed animat. Animats
hidden by those that are closer to the observed animat and ones that are outside its field of view are
then filtered out. The nearest seven animats remaining in the list provide the data about the universe.
Only information about the relative position (i.e., angular offset with respect to the observed animatʼs
heading), distance, speed difference, and heading difference is passed on to the next stage.

Our approach differs from other existing models of number-limited neighborhoods (topological
distance) [1] in that it always takes into account a fixed number of nearest neighbors. Other models
typically implement the number-limited neighborhood as a variable radius-limited neighborhood [13].
In a variable radius-limited neighborhood, the observed animat will increase its radius of perception
if in the previous step it perceived less than the specified number of animats, and decrease it if in
the previous step it perceived more than the specified number of animats. This approach in truth
varies the number of perceived animats in every step of the simulation, but limits it to the specified
number. The principal reason this approach is taken is probably the speed of computation. Its
drawback is that the observed animat could potentially perceive all of the other animats, provided
these were distributed so that they were all at the same distance from the observed animat.

The number of objects that can be stored in working memory in humans and other mammals
is small (four to seven) [1, 8]. The hippocampus, the structure in the brain primarily responsible for
working memory, is generally similar in birds and mammals [43]. Our use of seven nearest animats
in the perceptual world of the prey and predator is thus based on research on working memory. In
addition, once the predator selects its target, in our model, it filters out all other potential prey,
mimicking selective attention [50].
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A.2 Drives

The drives that result in actions that would fulfill the animatʼs individual needs are modeled using
Mamdani fuzzy rules [32]. For a detailed description of the cohesion, separation, and alignment
drives, as well as a brief explanation of how a specific action is computed, the reader is invited
to refer to [28]. An in-depth description is available in [26].
Figure 8. Detailed description of the hide drive. On the membership function charts that describe speed, the value 1
represents the appropriate maximum speed (predatorʼs or preyʼs), while −1 represents the negative value of the appro-
priate maximum speed. While these are the desired changes in speed, the action selection stage ensures that the current
speed of the observed individual never falls below the appropriate minimum speed (predatorʼs or preyʼs).
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The data extrapolated in the previous stage are fuzzified as singletons and used as inputs for the
fuzzy rules. The fuzzy variables, membership functions, and control rules for the hide drive can be
seen in Figure 8. Figure 9 presents the regulate-speed drive, and Figure 10 presents the seek drive.
The fuzzy rules are evaluated per individual perceived animat and the fuzzy outputs aggregated.
Figure 9. Detailed description of the regulate speed drive. On the membership function charts that describe speed,
the value 1 represents the preyʼs maximum speed, and −1 represents the negative of the preyʼs maximum speed.
While these are the desired changes in speed, the action selection stage ensures that the current speed of the observed
individual never falls below the appropriate minimum speed (predatorʼs or preyʼs).
Figure 10. Detailed description of the seek drive. On the membership function charts that describe speed, the value 1
represents the predatorʼs maximum speed, and −1 represents the negative of the predatorʼs maximum speed.
While these are the desired changes in speed, the action selection stage ensures that the current speed of the observed
individual never falls below the appropriate minimum speed (predatorʼs or preyʼs).
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The fuzzy outputs are then defuzzified and a force vector computed. This force vector represents
the action that will fulfill the individual need. It gives the direction and magnitude of the individual
drive (the desired change in speed and direction).
A.3 Action Selection

In the action selection stage the force vectors resulting from individual drives are merged together
and a resulting force vector computed. The merging is achieved through a simple weighted sum of
Table 1. Default parameter values.
Parameter
358
Description
Artificial Life Volum
Default value
Dt
 Time step
 1 frame ( 130 s)
T
 Maximum length of one simulation
 900 frames (30 s)
vaM
 Maximum speed of the predator animat
 22 m/s
vam
 Minimum speed of the predator animat
 8.8 m/s
vpM
 Maximum speed of prey animats
 18 m/s
vpm
 Minimum speed of prey animats
 7.2 m/s
B
 Animat field of view
 300°
n
 Number of influential nearest neighbors
 7
wc
 Weight for cohesion drive
 5
ws
 Weight for separation drive
 5
wa
 Weight for alignment drive
 3
we
 Weight for hide drive
 4
wrs
 Weight for regulate-speed drive
 1
wh
 Weight for seek drive
 1
l
 Body length
 0.2 m
Fuzzification
 Singleton
Fuzzy conjunction
 Product
Fuzzy disjunction
 Probabilistic sum
Fuzzy implication
 Product
Fuzzy aggregation
 Probabilistic sum
Defuzzification
 Center of gravity
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the individual force vectors. The resulting force vector is interpreted as a Newtonian force, based on
which the observed animatʼs speed, heading, and position are updated.

A.4 Parameter Values

All of our modelʼs parameters were either extrapolated from relevant theoretical literature (speed, field
of view, etc.) or tuned (fuzzy membership functions, action selection mixing weights, etc.) so that the
resemblance of the displayed behavior to that observed in nature was visually as close as possible. For
example, the action selection mixing weights have been configured so that the simulations visually
resemble (as closely as possible) field observations of flocking behavior. In the preyʼs case these were
5, 5, 3, 4, and 1 for cohesion, separation, alignment, hide, and regulate speed, respectively. Table 1
presents all of the remaining parameters of the model.
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